Nonpolarized cells selectively sort apical proteins from cell surface to a novel compartment, but lack apical retention mechanisms.
نویسندگان
چکیده
Membrane trafficking is central to establishing and maintaining epithelial cell polarity. One open question is to what extent the mechanisms regulating membrane trafficking are conserved between nonpolarized and polarized cells. To answer this question, we examined the dynamics of domain-specific plasma membrane (PM) proteins in three classes of hepatic cells: polarized and differentiated WIF-B cells, nonpolarized and differentiated Fao cells, and nonpolarized and nondifferentiated Clone 9 cells. In nonpolarized cells, mature apical proteins were uniformly distributed in the PM. Surprisingly, they were also in an intracellular compartment. Double labeling revealed that the compartment contained only apical proteins. By monitoring the dynamics of antibody-labeled molecules in nonpolarized cells, we further found that apical proteins rapidly recycled between the compartment and PM. In contrast, the apical PM residents in polarized cells showed neither internalization nor return to the basolateral PM from which they had originally come. Cytochalasin D treatment of these polarized cells revealed that the retention mechanisms are actin dependent. We conclude from these data that both polarized and nonpolarized cells selectively sort apical proteins from the PM and transport them to specific, but different cellular locations. We propose that the intracellular recycling compartment in nonpolarized cells is an intermediate in apical surface formation.
منابع مشابه
Nonpolarized Cells Selectively Sort Apical Proteins from the Cell Surface to a Novel Compartment, but Lack Apical Retention Mechanisms
متن کامل
Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes
Classically, the polymeric immunoglobulin receptor and its ligand, IgA, are thought to be sorted from basolateral early endosomes into transcytotic vesicles that directly fuse with the apical plasma membrane. In contrast, we have found that in MDCK cells IgA is delivered from basolateral endosomes to apical endosomes and only then to the apical cell surface. When internalized from the basolater...
متن کاملIntracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells.
Many viruses use the host trafficking system at a variety of their replication steps. Measles virus (MV) possesses a nonsegmented negative-strand RNA genome that encodes three components of the ribonucleoprotein (RNP) complex (N, P, and L), two surface glycoproteins, a matrix protein, and two nonstructural proteins. A subset of immune cells and polarized epithelial cells are in vivo targets of ...
متن کاملRab17 Regulates Membrane Trafficking through Apical Recycling Endosomes in Polarized Epithelial Cells
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains while selectively allowing transport of proteins and lipids from one pole to the opposite by transcytosis. The small GTPase, rab17, a member of the rab family of regulators of intracellular transport, is specifically induced during cel...
متن کاملApical and basolateral coated pits of MDCK cells differ in their rates of maturation into coated vesicles, but not in the ability to distinguish between mutant hemagglutinin proteins with different internalization signals
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basola...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2002